欧美第一页,亚洲欧美日韩国产,狠狠色欧美亚洲狠狠色WWW,欧美精品视频一区二区三区

當(dāng)前位置: > 學(xué)術(shù)報告 > 文科 > 正文

文科

One-bit Low-tubal-rank Tensor Recovery

發(fā)布時間:2020-11-18 瀏覽:

報告人: 王建軍 教授

講座日期:2020-11-19

講座時間:15:00

報告地點:騰訊會議(768 415 831

主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院

講座人簡介:

王建軍,西南大學(xué)教授,巴渝學(xué)者特聘教授,重慶市創(chuàng)新創(chuàng)業(yè)領(lǐng)軍人才,重慶工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會副理事長,CSIAM全國大數(shù)據(jù)與人工智能專家委員會委員,美國數(shù)學(xué)評論評論員,曾獲重慶市自然科學(xué)獎勵三等獎。主要研究方向為:高維數(shù)據(jù)建模與挖掘、深度學(xué)習(xí)、壓縮感知與張量恢復(fù)、函數(shù)逼近論等。在神經(jīng)網(wǎng)絡(luò)(深度學(xué)習(xí))逼近復(fù)雜性和高維數(shù)據(jù)稀疏建模等方面有一定的學(xué)術(shù)積累。多次出席國際、國內(nèi)重要學(xué)術(shù)會議,并應(yīng)邀做大會特邀報告22余次。已在IEEE Transactions on Pattern Analysis and Machine Intelligence, Applied and Computational Harmonic Analysis, Inverse Problems, Neural Networks, Signal Processing, IEEE Signal Processing letters, Journal of Computational and Applied MathematicsICASSP,中國科學(xué)(AF), 數(shù)學(xué)學(xué)報, 計算機學(xué)報,電子學(xué)報等知名專業(yè)期刊發(fā)表90余篇學(xué)術(shù)論文。主持國家自然科學(xué)基金5項,教育部科學(xué)技術(shù)重點項目1項,重慶市自然科學(xué)基金1項,主研8項國家自然、社會科學(xué)基金;現(xiàn)主持國家自然科學(xué)基金面上項目2項,參與國家重點基礎(chǔ)研究發(fā)展973計劃1項。

講座簡介:

This talk focuses on the recovery of low-tubal-rank tensors from binary measurements based on tensor-tensor product (or t-product) and tensor Singular Value Decomposition (t-SVD). Two types of recovery models are considered; one is the tensor hard singular tube thresholding and the other is the tensor nuclear-norm minimization. In the case no random dither exists in the measurements, our research shows that the direction of tensor $\mathcal{X} \in \R^{n_1\times n_2\times n_3}$ with tubal rank r can be well approximated from $\Omega((n_1+n_2)n_3r)$ random Gaussian measurements. In the case nonadaptive adaptive dither exists in the measurements, it is proved that both the direction and the magnitude of $\mathcal{X}$ can be simultaneously recovered. As we will see, under the nonadaptive adaptive measurement scheme, the recovery errors of two reconstruction procedures decay at the rate of polynomial of the oversampling factor $\lambda:=m/(n_1+n_2)n_3r$,i.e., $\mathcal{O}(\lambda^{-1/6})$ and $\mathcal{O}(\lambda^{-1/4})$, respectively. In order to obtain faster decay rate, we introduce a recursive strategy and allow the dithers in quantization adaptive to previous measurements for each iterations. Under this quantization scheme, two iterative recovery algorithms are proposed which establish recovery errors decaying at the rate of exponent of the oversampling factor, i.e., $\exp(-\mathcal{O}(\lambda))$. Numerical experiments on both synthetic and real-world data sets are conducted and demonstrate the validity of our theoretical results and the superiority of our algorithms. 

免费无码在线观看| 日韩黄色大片儿| 夜夜精品第一网| 欧美最猛性xxxxx大叫| 超碰AV热线| 无码专区人妻系列日韩精品 | 天堂区| 色婷五月婷婷| 五月婷婷视频在线| 亚洲天堂一区二区三| 人妻二区三区| AV五码高清| 亚洲国产综合久久精品| jizzjizz国产精品久久| 搞搞久久| 女人高潮下面喷水视频| 亚洲欧美一区二区三区孕妇| 亚洲国产成人久久综合区| a∨手机天堂网:| 日日夜夜擦| 10天的爱人满天星| 久久中文字幕制作| 中品极品少妇XXX| 国产精品无码自拍| 国产强上无码视频| 五月婷婷丁香爱爱视频| 国产看黄网站又黄又爽又色| 五月丁香五月丁香婷婷| se久久久| 工口h视频| 国产精品看高国产精品不卡| 亚洲人成综合网站| 狼友免费观看| 成人日韩无码福利导航| 欧美激情综合站| 亚洲夜射射夜| 全黄高潮| 性爱人妻天天| 日产精品久久久久久久蜜臀| 碰超少妇| 亚洲AV日韩AV永久无码久久|