欧美第一页,亚洲欧美日韩国产,狠狠色欧美亚洲狠狠色WWW,欧美精品视频一区二区三区

當前位置: > 學術報告 > 理科 > 正文

理科

計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

發(fā)布時間:2014-10-09 瀏覽:

講座題目:計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

講座人:李三江 教授

講座時間:15:00

講座日期:2014-9-30

地點:長安校區(qū) 計算機科學學院學術報告廳

主辦單位:計算機科學學院

講座內容:The Region Connection Calculus (RCC) isa well-known calculus for representing part-whole and topological relations. Itplays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC has been investigated in depth in the literature. Most of these works focus on the consistency of RCC constraint networks. In this talk, we considerthe important problem of redundant RCC constraints. For a set N of RCC constraints, we say a constraint (x R y) in N is redundant if it can be entailed by the rest of N, i.e., removing (x R y) from N will not change the solution set of N. A prime subnetwork of N is a subset of N which contains no redundant constraints but has the same solution set as N. It is natural to ask how to compute such a prime subnetwork, and when it is unique. In this talk, we show that this problem is in general intractable, but becomes tractable if N isover a tractable subclass S of RCC. If S is a tractable subclass in which weak composition distributes over non-empty intersections, then we can further show that N has a unique prime subnetwork, which is obtained by removing all redundant constraints simultaneously from N. As a byproduct, we identifya sufficient condition for a path-consistent network being minimal.

东京热一区国产无码| 欧美黄色特级大片播放| 午夜视频一区二区三区| 久久日av| 国产在线xxx| 99久久人要免费二区| 超乳爆乳中文在线视频| 人人碰| 人妻无碼| 百度-色呦呦| 99亚洲一区二区三区| 3p视频在线| 农村妇女在线免费视频| 日韩av综合一区| 13萝自慰喷白浆| 无码a色黄| 爱看AV在线网址| 人人操人人色在线| 国产亚洲午夜高清国产拍精品| 玖玖资源365| 国产传媒不卡| 第四色欧美色图| 男人的天堂丁香社区| 野花日本视频免费观看3| 麻豆AV影视大全| 欧美黄片一二三| 无限高潮91ropn九色| 84PAO国产成视频永久免费| 日本免费一级特黄视频| 色婷婷婷婷色六月丁| 欧洲精品中文字幕| 欧美另类一区二区| 99国内精品在线| 免费加无码无套| 久久Av毛片| 欧美日韩一级婬片观看| 久久精品视频观看| 高h文在线观看| 亚洲狼人综合干视频| 91熟女专区| 亚洲日韩乱码中文字幕|