講座人: 紀(jì)友清教授、朱森教授
講座時(shí)間:15:00
講座日期:2020-11-09
地點(diǎn):騰訊會(huì)議(ID:401750651 )
主辦單位:數(shù)學(xué)與信息科學(xué)學(xué)院
報(bào)告題目一: Power Set of Some Quasinilpotent weighted shifts
報(bào)告人: 紀(jì)友清教授
報(bào)告人簡(jiǎn)介:
紀(jì)友清,吉林大學(xué)教授,博士生導(dǎo)師,長(zhǎng)期從事算子理論與算子代數(shù)研究,主持多項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目及教育部高等學(xué)校博士點(diǎn)專項(xiàng)基金等項(xiàng)目,在Trans. Amer. Math.、 J. Funct. Anal.、J.Operator Theory等國(guó)內(nèi)外期刊上發(fā)表了重要學(xué)術(shù)論文。2004年入選教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃。
講座簡(jiǎn)介:
For a quasinilpotent operator T, write for each nonzero vector x. Set $, and call it the power set of T. This notation was introduced by Douglas and Yang. They showed thatfor , $ is a linear subspace invariant under each A commuting with T; hence, if there are two different points such that are closed, then T has a nontrivial hyperinvariant subspace. It is natural to consider the following questions. Which subsets can be the power set of a quasinilpotent operator? Is closed? I will talk something about and the closeness of.
報(bào)告題目二:隨機(jī)Toeplitz代數(shù)
報(bào)告人: 朱森教授
講座時(shí)間:16:30
報(bào)告人簡(jiǎn)介:
朱森,吉林大學(xué)數(shù)學(xué)學(xué)院教授,博士生導(dǎo)師。主持國(guó)家自然科學(xué)基金青年、面上等項(xiàng)目。近年來(lái)主要從事線性算子的復(fù)對(duì)稱性、隨機(jī)理論等方面的研究,在 J. Funct. Anal., J. London Math. Soc., Math. Ann., Trans. AMS 等雜志發(fā)表系列論文。
講座簡(jiǎn)介:
給定獨(dú)立同分布的隨機(jī)變量{X_n}_{n\geq 1}, 我們以T表示以{X_n}為權(quán)的隨機(jī)Hardy移位,其生成的C*代數(shù)我們稱為與T相關(guān)的隨機(jī)Toeplitz代數(shù)。本報(bào)告將介紹我們關(guān)于這一C*代數(shù)的若干初步結(jié)果,包括理想、表示、穩(wěn)定秩等。這些結(jié)果是經(jīng)典Toeplitz代數(shù)相關(guān)結(jié)果的隨機(jī)版本。